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1     Overview of the Research Effort 

The objective of the current research is to develop a probabilistic analysis framework incorporating high 
performance composite design methodologies to predict the reliability of composite structures. The research 
links state-of-the-art laminate design techniques with failure models. This effort has the potential for 
application to the types of engineering tasks that are required for the development of new rotorcraft using 
modern composite materials and technologies and is especially relevant to the areas of damage tolerance and 
crash-worthiness. The research will yield a methodology and software that would greatly improve both our 
physical understanding and analytical capability in this subject area. 

The methodology is being demonstrated on a helicopter rotor hub test specimen with thick, thin, and 
tapered regions. The specimen is subjected to a static axial load P and an oscillatory angular displacement 3>. 
The failure mechanism that is observed from this type of fatigue loading is an initial tension crack followed 
by internal delamination at the thick to taper transition where internal ply drop-offs occur. 

A structural model of the rotor hub was created using the finite element program ANSYS. The output 
from the structural analysis in ANSYS was fed into the Virtual Crack Closure Technique (VCCT) module to 
model delamination onset. A Reliability Analysis framework including Response Surface Analysis and 
FORM modules was developed to integrate with the structural analysis modules. The response surface 
analysis was used to develop a limit state equation relating the primitive input design parameters (random 
variables such as P, and O) to strain energy release rate Gmm. FORM analysis estimated the probability of 
delamination onset and furthermore, determined the distribution of the failure probability over a range of 
cyclic lives. In addition, the sensitivity analysis in FORM revealed that the external loading to the structure, 
namely P and O are the most critical parameters affecting the reliability of the rotor hub. Summarizing, the 
following tasks were successfully completed at the end of Phase I. 

■ Demonstrated probabilistic analysis framework 
■ Demonstrated composite Finite Element modeling (FEM) technique 
■ Developed framework for integrating probabilistic and FEM codes 
■ Applied developed method to a practical problem 

Phase I of the proposed research effort has successfully demonstrated that the probabilistic analysis 
framework can be integrated with current state-of-the-art composite design to estimate the failure probability 
due to various critical failure modes. In addition, the same framework can be used to compute the sensitivity 
of the reliability of the final design to the random variables without any extra computational effort. 

2     Identification and Significance of the Problem 

The structural evaluation of composite materials is different from that used in isotropic materials. 
Behavior of composites is dependent on the specific way in which a given composite is layered. The 
orientations allow the designer freedom in tailoring structures for obtaining the desired response. The 
evaluation of composite structures needs to account for the effects of tailoring. 

The development of advanced high-performance composites, until now, has mainly focused in achieving 
high .modulus and high strength. But along with the high strength, such materials must also be able to absorb 
energy and resist cyclic fatigue loads. Fatigue loads can initiate progressive failure in a composite laminate by 
way of successive delamination, matrix cracking, fiber waviness, etc. Such imperfections can severely reduce 
the load carrying capacity of the laminates, ultimately leading to structural failure. While it is possible to 
address the effect of geometric and material non-linearity using current sophisticated analysis methods, the 
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highly stochastic nature of damage progression and extreme sensitivity to small geometrical uncertainties 
results in untrustworthy analytical predictions. 

The problem is further compounded by the fact that there is significant randomness in the material and 
geometric properties of such composites. Another vital source of variance is the loads to which composite 
structures are subjected. The exact load distribution, its variation in time and therefore, its structural effect on 
composites for aerostructure applications are seldom deterministic. A probabilistic analysis framework 
incorporating the current laminate design methodologies is the best strategy to account for these variations in 
both load and material properties. 

3 Technical Objectives of the Phase I Effort 

The research developed a probabilistic analysis framework incorporating current aerostructure industry 
composite laminate design methodologies to predict the reliability of composite structures. The research 
considered the reliability-based composite design methodology as being divided into two distinct but closely 
coupled modeling techniques. The first modeling technique is the structural model that uses finite element 
analysis to determine the global and ply level response of the structure at the damage sites. The finite element 
analysis is the same as that currently employed in the aerostructure industry. The finite element model is 
extended to address the random nature of the structural application. The model considers the stochastic 
aspects of the input loads. Variation in the global geometry is considered, along with local ply level variation. 
The distributions of geometric variations were determined by investigating the sources of the variations such 
as standard manufacturing techniques, manufacturing anomalies, and service duty. 

The second modeling techniques are the failure models that are closely coupled with the structural model. 
The failure models, which address initial damage, are specific models that have been developed by the 
rotorcraft industry and the Army Research Laboratory. The failure models consider many of the same input 
variations as the structural models. The failure models also consider variations in the local responses to 
determine the probability of occurrence of damage states. 

The objective of the Phase I research was to develop and validate an overall progressive failure 
methodology using the approach outlined above. 

4 Research Team 

The research team comprises of PerSyst Development, Vanderbilt University and Bell Helicopter. For 
the probabilistic methodologies to have commercial application, these methodologies must be developed with 
a thorough understanding of current rotorcraft design practices. Thus, a close working relationship has been 
fostered between PerSyst/Vanderbilt and Bell Helicopter. Bell has identified rotor fatigue loading as a 
significant probabilistic design consideration due to the large amount of scatter in the observed fatigue life of 
the large scale composite rotortest specimens. The Phase I effort is targeted at developing and applying the 
probabilistic methodology to the design and analysis of the rotor test specimens currently used by Bell. The 
finite element-based macrostructural model is consistent with current modeling methods used at Bell and the 
microstructural fatigue damage accumulation model is based on the models developed through the 
cooperative efforts of Bell and the U.S. Army Research Laboratory. Bell is also helping the 
PerSyst/Vanderbilt team identify the work that must be completed in the Phase II effort. This collaboration 
will assure that the final product addresses the current and near term needs of composite rotorcraft design and 
assure that the final product can be successfully integrated into the design practice. 

t 

5 Phase I Research Conducted 

The focus of the research has been in three areas; 1) determining the failure mechanism and developing 
the structural models to simulate the local conditions governing the failure mechanism for the demonstration 
problem, 2) developing the reliability computation framework for the demonstration problem and 3) 
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developing additional reliability algorithms. The focus areas have been further subdivided into several tasks. 
Each of these tasks is discussed below. 

5.1     Focus Area 1: Failure Mechanisms and Models 

5.1.1    Demonstration component 

Figure 1: Rotor hub assembly. 

the rotor passage with the 
fuselage or other static structures and aerodynamic gust loads. The 
actual load experience in service is a complex random spectrum 
dependent on mission, local environment, and turbulence [1]. 

Generalized test specimens have been developed to understand 
the basic response of the composite rotor hub yokes. The specimens 
are geometrically simple with thick, thin, and tapered regions, as 
shown in Figure 3 and approximate the geometry of section A-A in 
Figure 2. The specimens are subjected to constant axial tensile load 
(P) to simulate the rotation of the rotor at constant speed and cyclic 
bending load (V) to simulate the interaction of the rotor passage with 
the fuselage. A typical test setup is diagramed in Figure 3. The cyclic 
load (V) induces an angular displacement (8) which simulates the 
flexural bending in the yoke. 

Hingeless, bearingless helicopter rotor hubs are being designed 
using laminated composite materials to reduce weight, drag, and the 
number of parts in the hub as shown in Figure 1. An effective elastic 
hinge is designed integrally to the composite rotor yoke by 
incorporating a tapered region between thick and thin regions. The 
varying thickness of the tapered region is accomplished by dropping 
internal plies. The thick-taper-thin geometry is tailored to give the 
proper flapping flexure. An example of a composite rotor yoke is 
shown in Figure 2. 

During flight, the rotor hub yoke experiences axial tension loads 
as well as bending loads. The axial tensile loads are centrifugal 
loads caused by the rotation of the rotor. The bending loads are 
caused by the interaction of 

Figure 2: One-piece composite 
yoke. 

>    P 

Figure 3: Typical test set-up. 
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Initial Tension c i ->       i-  •/ t      ■ Crack 5./. 2     Failure mechanism 
ket 

The plydrop in the laminate creates 
geometrical and material discontinuities 
that cause large interlaminar stresses and 
initiate delamination. The failure 
mechanism observed from this type of 
loading is an initial tension crack 
followed by internal delamination at the 
thick to taper transition where internal 
ply drop-offs occur. 

5.1.3     Failure model 

Several studies have investigated the 
effect of delamination failure in tapered 
laminates. Some of these studies have 
used stress-based criteria for modeling 
the failure [2-7]. Others have used a 
strain energy release rate approach to 
study delamination [8-13]. Most of the 
above mentioned methods have only 
considered delamination under pure 
tension, bending or torsion loads. Very 
few studies have considered the 
combined effect of bending and tension 
on delamination of tapered laminated 
composites [14,15]. 

In this study, the method used to 
model the delamination failure mechanism is based on total strain energy release rate G which is the sum of 
the mode I strain energy release rate and the mode II stain energy release rate. A virtual crack closure 
technique (VCCT) is used to calculated G at the delamination tip as shown in Figure 4 [16,17] such that 

Figure 4: Model of crack tip at plydrop. 

G = GI + GII (4.1) 
where, 

G/=~2ÄtF"'(V*"V*) + F'!'(Vm"V'»,)] 

Gil = ~ 9ä[
F

« ("* ~ Uk') + Fnj(«* ~ Um )] 2A< 
and u and v are tangential and perpendicular nodal displacements respectively and F, and F„ are the tangential 
and perpendicular nodal forces respectively 

Delamination onset is assumed to occur when the calculated G exceeds the Gcril derived from material 
coupon delamination tests [8,13,15]. The details of estimating the probability of delamination onset are 
explained in the Section 5.2.2. A finite element model will be used to determine the local forces and 
displacements needed to calculate G as shown in Figure 4. The finite element model is discussed below. 
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5.1.4    Structural model 

The geometry of the ANSYS finite element model for the problem is shown in Figure 5. The model 
consists of 6814 nodes and 2860 elements. The elements are of three types: 4-node quadrilateral, 8-node 
quadrilateral, and 6-node triangular elements. In the thick to taper transition region where delamination is 
critical, the finite element mesh is refined (see Figure 6) and modeled with 8-node quadrilateral elements. The 
average element size in this region is 1/4* the ply thickness. Such small element size ensures that 
computation of the strain energy release rate, G, does not suffer from numerical inconsistencies. The resin 
pockets at the end of the dropped ply zones are modeled with 6-node triangular elements. The tension crack 
at the interface of the dropped ply zone and the resin pocket has been modeled with the help of contact 
elements. The delamination cracks at the interface of the belt plies and the dropped ply zones have been 
modeled with the help of duplicate multi point constraint (MPC) nodes. 

5. /. 5    Calculation of laminate material properties 

A simple FORTRAN code has been written to compute the laminate material properties from the basic 
material properties. The method is well known, and is described in any textbook on composite materials 
mechanics, e.g., [18]. 

5.1.6      ANSYS finite element stress analysis 

A nonlinear finite element analysis is executed for the stress analysis. The total load increment is divided 
into ten steps. In each step, a tenth of total loading is applied. The stiffness matrix is reassembled at each step 
and a maximum of 30 iterations is used for convergence of the stress analysis. A batch file in ANSYS is 
written to extract the displacements and the nodal forces at the elements around the delamination tip as a 
result of the stress analysis. 

A program in C language is written to use the displacements and the nodal forces at the delamination tip 
to compute the strain energy release rate, G, according to the Eq. (4.1). The various steps in ANSYS stress 
analysis, including the building of the response surface model are illustrated in a flow chart in Figure 7. 

ai 
o 
OJ 

y 

SI 

3.6 4 0.9    0.66^0.796    1.038 1,500 1.000 

X 

Figure 5: Model of tapered rotor hub 
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Delamination 
growth 

Figure 6 Refined mesh in the thick to taper transition. 
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Figure 7: Framework for stress analysis 

5.1.7    Delamination growth analysis 

The objective of this task is to calculate the strain energy release rate for different delamination lengths 
and determine the delamination length at which the maximum strain energy release rate (Gmax) is observed. 
Then the response surface method and direct FORM can be used to calculate the delamination probability of 
helicopter rotor. 

Figure 6 shows the detail of delamination growth analysis: From point A to B, the duplicate nodes 
between elements along the delamination front are released step by step. In each step, nonlinear finite element 
analysis is performed and the G value at the delamination tip is calculated. Table 1 and Figure 8 show the 
relationship between the delamination length and the corresponding strain energy release rate. (Note: 
Delamination starts from X = 5.0, and grows to the left). The maximum G value of 1.014553 in-lb/in2 is 
observed when the delamination length equals 0.026167 inch. The model with this delamination length is 
used further for response surface analysis as well as direct FORM analysis. 

Table 1: G value and delamination length. 

Delamination 
length (in) 0.016033 0.0211 0.026167 0.031234 0.036302 0.074312 

G value 
(in-lb/in2) 0.605323 0.891599 1.014553 0.944279 0.87124 0.447136 

Delamination 
length (in) 0.114855 0.195935 0.25675 0.317564 0.378375 4.581083 

G value 
(in-lb/in2) 0.258372 0.17699 0.192102 0.237581 0.336777 0.459771 
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Figure 8: G values for different delamination lengths. 

5.7.5    Random variable definition 

Based on data from Bell Helicopter, seven random variables have been identified for probabilistic 
analysis with the finite element model of the helicopter rotor hub. These are material property variables En, 
E22, vu, and G/j, the oscillatory bending angle 0 caused by the cyclic loading, the magnitude of the axial load 
P, and the critical value of the strain energy release rate Gcril. All the random variables are assumed to be 
Gaussian (normal) for the purpose of demonstration, and their mean values and standard deviations are 
shown in Table 2. 

Table 2 : Random variable description 

S2/E7T1-2 Tape 
Property Mean Std. Deviation 
En (Msi) 6.90 0.09 
E22 (Msi) 1.83 0.05 
Gn (Msi) 0.698 0.015 

Vl3 0.28 0.01 
P (kips) 30.8 3.08 
9 (degrees) 12 1.67 
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The objective of the demonstration problem is to estimate the probability of initiation of delamination at 
the required life. This is assumed to occur when the strain energy release rate exceeds the limiting value Gcrn, 
which is a function of load cycles, N. Figure 9 shows the Gcri, vs. N as supplied by Bell Helicopter based on 
test data. Figure 9 also shows the best fit line through the data assuming Gcril is a linear function ofLogwfN). 
According to Figure 9, the relationship between Gc„, and N can be expressed as: 

Gcri, =448.56- 58.57 lLogi0(N) (4.2) 

Based on statistical analysis of the Gcri, vs. iVdata, it was determined that Gcril is a Gaussian (normal) 
random variable with its mean value described by Eq. (4.2) and a standard deviation of 36.6 J/m2. 

Gcrit 

350 

300 

250 

200 

150 

100 

50 

0 

♦   Data 

 Mean 

 + Sigma 

 Sigma 

3 4 5 6 

Log(N) 

Figure 9: Relationship between G_crit and cycles of life. 

5.2     Focus Area 2: Development of Reliability Analysis Module 

This task requires developing a reliability analysis module using the First Order Reliability Method 
(FORM) [19]. The methodology of FORM requires describing the failure condition in a mathematical form 
as follows: 

S = Gent ~ Gmax (4.3) 

Eq. (4.3) is called the limit state function. The limit state is a characteristic of the system component that 
can be observed, and is defined to represent the failure of the component to attain a required level of 
performance. According to Eq. (4.3), g < 0, i.e., Gmax exceeds Gcril, represents failure and g > 0 represents 
the safe state of the system. The limit state function relates the system performance to primitive random 
design variables. In this case, Gcrit and G„iarare random variables that are dependent on primitive random 
variables such as material properties, geometric properties, loading conditions, etc. which have inherent 
scatter in their definition. Gc„, can be considered to be the capacity of the system and Gmax can be considered 
to be the demand on the system. FORM uses a constrained linear optimization technique to estimate the 
probability of g < 0. 

PerSyst Development Group 
Paul Holland & Associates, Inc. 

13 



The main benefit of using probabilistic reliability techniques such as FORM to predict product 
performance is that they enable the engineer to determine the sensitivity of the probability of failure to 
individual random variables. Specifically, if probabilistic methods are used, the sensitivity of the probability 
of failure to changes in random variable mean and variance can be found in closed form [19]. 

The utilization of probabilistic methods to estimate product performance and reliability has several 
benefits: 
1. Design performance sensitivities to changes in mean, variance and truncation of variables can be 

estimated using closed-form relationships. 
2. Individual and system level estimates of performance and reliability can be found simultaneously. 
3. Product sensitivities to performance, reliability and cost can be linked and optimization methods can be 

employed to determine the optimal product configuration. 

Design Matrix 
(input) 

X 

Structural 
Analysis 

Output Array 
Y 

Least Squares 
Fit 

5.2.1     Response surface modeling of the limit state 

The limit state function in Eq. (4.3) is not available as a closed-form 
function of the basic random variables. It can only be computed through the 
ANSYS finite element stress analysis; thus it is an implicit function of the 
random variables. In such a case, the response surface approach, as shown 

in Figure 10, can be used to develop an approximate closed-form 
expression of the limit state function, and then the first-order reliability 

method (FORM) can be used to estimate the delamination probability. The 
response surface approach consists of two steps: 

1. Design of experiments, i.e., the choice of different sets of values of the 
random variables to compute the corresponding values of the response g, 
and 
2. Regression analysis, to construct the approximate closed-form function. 

An initial regression analysis (screening analysis) including all seven 
random variables revealed that only three out of the seven random 
variables, namely, the bending angle (0), magnitude of the axial load (P), 
and the material property En had any significant effect on the limit state 
function. Therefore, for further analysis only three of the above mentioned 
random variables were included. 

A Central Composite Design (CCD) (see Section 6.3) scheme was 
adopted to fit the response surface. For small number of random variables, 
such a design scheme is most efficient to explore the possibility of second- 
order effects and first order interaction terms among the random variables. 
A total of fifteen sets of experiments (non-linear finite element analyses) 

were performed to develop the response surface. The data sets for each experiment were gathered by 
selecting the value of each random variable at three levels, namely, mean, mean + 2 standard deviations and, 
mean- 2 standard deviations. 

Table 3 shows the array of 15 experiments. A least squares regression of the data produced the equation: 

Figure 10: Response 
surface method. 

■3 T>2 Gmax = 1.006 + 8.402 x \0^Eu + 0.138P + 0.1910 + 5.432 x 10"J P 

+1.031 x 1O_202 +2.359 x \O~2P0 
(4.4) 
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As expected, the regression model (Eq.(4.4)) showed strong effect of the angle and magnitude of the load. 
Among the material property variables, En was also found to have some significance. Substituting Eq (4.4) 
into Eq (4.3) and maintaining consistency in units the final limit state equation is: 

g = Gcril -175.344(1.006 + 8.402 xl0^3£n +O.138Z, + O.1910 + 5.432xlO"J/' 

+1.031 x 1O"202 + 2.359 x W2 P6) 
(4.5) 

Table 3: Response surface analysis data 

No. £//(Msi) P(Lb) flPeg) Gmax (in-lb/in2) 

1 6.90 30800 12 1.014553 

2 7.08 30800 12 0.998717 

3 6.72 30800 12 1.031467 

4 6.90 36960 12 1.273955 

5 6.90 24640 12 0.668086 

6 6.90 30800 15.333 1.434791 

7 6.90 30800 8.667 0.633156 

8 7.08 36960 15.333 1.766893 

9 7.08 36960 8.667 0.817964 
10 7.08 24640 15.333 0.99471 

11 7.08 i 24640 8.667 0.468271 

12 6.72 36960 15.333 1.774213 
13 6.72 36960 8.667 0.832335 
14 6.72 24640 15.333 1.09308 
15 6.72 24640 8.667 0.483494 

5.2.2    Reliability analysis 

The objective of the Phase I research is to predict the probability of delamination onset in a helicopter 
rotor hub at a particular number of loading cycles. The steps involved in estimating the probability are: 

1. Choose the number of loading cycles (N). 
2. From Eq. (4.2) compute the mean value of Gc„y associated with N. 
3. With the limit state equation as defined in Eq. (4.5), perform a FORM analysis to estimate the 

probability of delamination onset and the sensitivity of the random variables to the estimated probability. 

Figure 11 shows the estimated probability of delamination onset at different values of the loading cycles. 
The mean predicted life is approximately 15000 cycles. Figure 12 shows the CDF plotted on lognormal 
paper. The linear form of the CDF in Figure 12 indicates that the fatigue life distribution is lognormal. The 
sensitivity results of the FORM analysis are shown in Table 4. It can be seen from the results that the bending 
angle 0, the axial load P, and Gcril are the most sensitive variables. 
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Figure 11: Cumulative distribution function (CDF) of delamination onset. 
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Table 4 :Sensitivity results 

LoglO(A9 (jcrit En P e 
1 -0.532 -0.0214 0.457 0.712 

2 -0.564 -0.0227 0.452 0.690 

3 -0.599 -0.0241 0.447 0.663 

4 -0.637 -0.0256 0.442 0.631 

5 -0.676 -0.0272 0.437 0.592 

6 -0.713 -0.0287 0.436 0.548 

5.3     Focus Area 3: Additional Reliability Algorithms 

The composite design framework developed in the Phase I effort allow for two basic types of reliability 
analysis: response surface methods and mean value methods. The response surface method is best suited for 
the construction of the complete CDF. The complete CDF analysis is useful when the reliability is desired 
over a wide range of cyclic lives. For example, the designer may be interested in knowing the reliability for 
lives ranging from 1000 to 100,000 cycles. In this case, multiple finite element analyses are performed to 
create a global response surface that is approximate throughout the cyclic life range of interest. The response 
surface module includes a design of experiments routine to determine the matrix of input parameter values 
based on the desired fidelity of the response surface. The response surface method was used in the 
demonstration problem to determine the reliability of the tapered composite as discussed in Section 5. This 
section discusses the development of mean value-based reliability algorithms that have been added to the 
overall analysis framework. 

Mean value methods restricts the finite element analyses to the region of the most probable failure point. 
This technique is useful when the reliability at a single value of life is of interest. For example, the designer 
may be interested in knowing the reliability only at a design requirement of 10,000 cycles. In this case, it is 
more efficient to perform multiple finite element analyses that are used to calculate the local response in the 
vicinity of 10,000 cycles. Two different routines were developed to perform the local reliability analysis; one 
based on Advanced Mean Value methods (AMV) and the other based on direct first order reliability 
techniques. 

J. 3.1    Mean value methods 

Mean value methods are particularly suitable when a closed-form expression of the limit state is not 
directly available, as is the case when finite element analysis is used to model the structural response. The 
reliability computation algorithm developed for the Phase I effort constructs a linear approximation to the 
limit state in the equivalent standard normal space. Mean value methods works differently, as follows. 

1.   A first-order Taylor series approximation is constructed at the mean values of the random variables—in 
the original space—based on perturbation-based sensitivity analysis using the finite element analysis or 
other implicit response models. The two-parameter scheme is used to transform this closed-form 
approximation and the random variables to the equivalent standard normal space. The Rackwitz-Fiessler 
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iteration formula is used to estimate the MPP, and a first-order estimate of the failure probability is 
obtained similar to FORM. This is referred to as the mean value first-order (MVFO) estimate. 

2. The MVFO estimate is refined using advanced mean value (AMV) analysis. This is simply a 
deterministic analysis of the system at the MPP, to evaluate the g-function. If the MVFO estimate were 
accurate, the g-function would be exactly zero. If the MVFO estimate were not accurate, then a different 
value would be obtained for the g-function. The MPP and the probability estimate identified by the 
MVFO are now assumed to correspond to this new value of the g-function. 

3. The above two steps are repeated for different values of the g-function. This results in the construction of 
the CDF of the g-function. 

Mean value methods are a practical alternative to FORM, if the deterministic analysis of the system is 
expensive. By simply combining the information from the MVFO step and one additional deterministic 
analysis, one is able to obtain a substantially improved estimate of the failure probability. 

There are optimization algorithms, such as BEGS, which combine the information in the iteration steps to 
perform an accurate search. Such algorithms are especially useful when the Rackwitz-Fiessler algorithm fails 
to converge. However, the programming effort and the memory storage requirements in these methods, plus 
the marginal improvement in accuracy over the Rackwitz-Fiessler method have hindered their widespread 
application in structural reliability studies. The AMV, with its minimal one step combination, is a practical 
approach in this direction. 

The AMV estimate can be further improved with more iteration. In the AMV + method, sensitivity 
analysis is performed after the AMV step, and steps 1 and 2 of the above procedure are repeated. In a similar 
manner, further iterations can be done to produce AMV + +, AMV + + +, etc., estimates. In each case, note 
that only the first iteration (MVFO) and the latest deterministic analysis are combined. It is important to note 
here that the sensitivity information in the AMV is computed only in the first iteration, i.e., at the MVFO 
step, which is at the mean values of the random variables. If the sensitivity values are needed at the MPP, 
then full sensitivity analysis needs to be performed. 

The AMV method achieves accuracy through a quadratic approximation of the g function at the very 
beginning (at the mean values of the random variables). That is, the first-order derivatives can be calculated at 
the beginning using finite difference or perturbation analysis to have a second-order Taylor series 
approximation 

g(X) «g(x')+ ]>>*),;(*,-x*) + ^(2gpi)x:(Xl,-*,') 
1=1 

II II " /=1 (3-D 

i=l i=l 

Most reliability codes available today linearize the above expression. However, the use of a quadratic 
expression for the g function in Eq. (5.1) make the MPP and sensitivity estimates after the MVFO estimate 
more accurate. Notice, however, that the quadratic approximation of Eq. (5.1) does not involve mixed terms, 
and the effects of the random variables on the g-function are considered separately. This introduces some 
approximation. 

5.3.2    MVFO/AMVsoftware program 

The MVFO and AMV methods described above were successfully transformed into a user-friendly 
computer program This section gives an example of how to use the method with the help of an example and 
screen dumps from the program. The mathematical details of the example are given in Section 6.2.3. 
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Example: 

Assume we have a cantilever bean of length L, loaded at the free end with a force w. We wish to find the 
vertical displacement at the free end of the beam. We know that the load w, stiffness E, and the moment of 
inertia /, are all normally distributed random variables, with mean and standard deviation as follows: 

w« #(5000,1000) lbs 

L * #(120,10) in 

£*#(30xl06,0.3xl06)psi 

/« #(1200,150) in4 

We know from mechanics that the vertical displacement d of the free end of a beam is 

</ = — (5.2) 
3EI 

Let us assume, for this example, we could not determine the displacement in closed form and had to use a 
simple finite element model to determine the end displacement. The details of each step involved in 
performing a Mean Value First Order (MVFO) Analysis for the above example are enumerated below. 

MVFO Analysis 

Step 1. The first step is to input all of the above information into the computer program. Figure 13 and Figure 
14 show the input screens for this step. It should be noted that random variables xl, x2, x3 and x4 refer to 
variables w, L, E and /respectively. 

Step 2. The next step in a MVFO analysis is performing a perturbation analysis about the mean values of the 
input random variables (w, L, E, I) using the finite element model. The perturbation analysis is performed to 

dz 
determine the gradient — of the response to each of the random variables. In this example z represents 

ck, 
vertical tip displacement d, of the cantilever beam. The perturbation analysis involved changing each variable 
by one-tenth of its standard deviation about its mean value and rerunning the finite element model to create 
the array of five finite element runs as shown below. The results of the perturbation analysis are shown in 
Figure 15. 

Step 3. Based on the perturbation analysis of Step 2, a first order Taylor Series expansion is performed about 
the mean values of the random variables expressing the vertical tip displacement d, as a function of the input 
variables. Figure 15 also shows this Taylor Series expansion expression. 

Step 4. Having defined the Taylor Series expansion, the next step is to define the limit state equation for first 
order reliability analysis. The limit state equation is defined as: 

S = d0-dapprox (5.3) 

where d0 is the "level of displacement" for which the reliability analysis is performed and dapprox is the 
Taylor Series expansion. In other words, the reliability analysis will find the probability that the beam 
displacement dapprox is greater than d0. In the program d0 is referred to as "Z-Level" (Figure 16). The user 

has a choice (a) either suggesting a range of Z-levels (c?0 values) based on a constant increment value 
(Automatic Z-Level Input) or (b) if the user is only interested in specific Z-levels, he/she can input those 
specific values individually (Manual Z-Level Input). 
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• FORM Input 

£üe  tiefp 

Input the Limit-Slate Function: 

ÜE3 

I(X1"X2"3)/'(3XX3XK4) 

/.Ol Random Variables   p ^J    Ownqettof RdridcmVarables 

Random Variable Information 

Mean Std-Deviation     Distribution 

Analysis Option - 

r FORM 

PÄMV 
f* Monte Carlo 

Perturbation 
Size 

XI 

xz 

X3 

X4 

|5000 [1000 [Normal d |0.l 

|1ZD |m [Normal d |0.1 

|30eG |0.3e6 [Normal d |0.1 

jizoo hso INormal d |01 

Fxecute 

Figure 13: AMV input screen -1. 

M Mean Value First Ordei IMVFOl Methods 

A.V. Infannition      |j 

The limit-state equation is : 

The * of RV's are: 

(x1"x2"3]/(3*x3"x4) 

. 3 

iMsiaÄ! Sid.-Deviation       Distribution Pertutbotion 

XI 

X2 

X3 

X4 

J5000 hooo [Normal d |ai 

J120 I10 [Normal d |0, 

|30eS t     |D3eS [Normal d |0, 

11200 1150 [Normal d |01 

Next» 

Figure 14: AMV input screen - 2. 
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I m Mean Value Fiist Older (MVFO) Methods ■ JnM 
08 

RY hfbrmatan       T PuturtaiDonAnalysis 1 

Perturbation Results 

I 

XI x2 x3 x4             |Z_org A 
5100 120 3.00E+07 1200          I0.0816 

5000 1Z1             |3.00E+07 1200          J8.20E-02 —^ {iilliili; 
I 
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Next»  | 

Figure 15: Perturbation analysis. 
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Figure 16: Z-level input. 
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Based on a range of values of d0, the probability that g < 0 is determined. Figure 17 lists the range of 
values of d0 considered along with the corresponding reliability indices (ß) and the most probable values 
(MPP) of the input random variables (w, L, E, I) for which the relationship g < 0 was satisfied. Figure 17 also 
plots d0 vs. ß (z vs. beta) for the MVFO analysis, which represents the cumulative distribution function 
(CDF) of the vertical tip displacement d of the beam. Notice that the MVFO curve is linear. This is because 
the random variables are normal and a first-order approximation to the beam displacement response (equation 
(5.3)) was used in the analysis. However, we have no reason to believe that the true displacement response of 
the beam is linear. If we wish to develop a better approximation to the true CDF, we perform an advanced 
mean value analysis. 

AMV Analysis 

AMV is a continuation of the MVFO analysis in which we use the MPP from the MVFO analysis and 
the finite element model to further refine the reliability analysis. 

Step 5. The vertical tip displacement based on the finite element analysis using the MPP values of the random 
variables is evaluated. These values are listed in the last column (z_org) of MVFO Results table in Figure 17. 
Notice that the value of the tip displacement from the finite element analysis (z_org) is not the same as d0 

(z-level). The value of d0 (z-level) is equivalent to the value obtained by using Taylor Series approximation 

at the MPP. The displacement value at each ß is shifted or "moved" from d0 to dFEM as show by the 
nonlinear AMV curve in Figure 17. The AMV curve is the CDF that represents a refinement to the MVFO 
CDF using just one additional finite element run. 

« Mean Value Fiisl Oidei (MVFO) Methods 

*&*■■ 

l_IO|x| 

R.V. WwtBtoft      |   PBtetatom SnMy»te~Y       MweHnput       | JMvroj |_ 

MVrO Results 
z-level I    bats x1 x? x3 *4 i_org 

2.90E*00 (3.32E+03  i9.88E*01    3.00E+07  I1.36E*03  |2.62E-02 

beta 

^ 

\*\   ' 

01 02 03 0 

x MVFO 

A AMV 

MVFO Plot 

Figure 17: MVFO results. 
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5.3.3    Direct FORM 

Direct FORM is an extension of the MVFO methods. In the direct FORM method, we do not construct a 
closed-form approximation to the limit state. The finite element analysis is used to compute the value and the 
gradient of the limit state at each iteration of FORM is used to search for the most probable point (MPP). The 
number of iterations is based on the convergence of /?and the MPP. Thus, AMV can be considered a subset 
of direct FORM. 

To implement the direct FORM method, a C program has been written to directly integrate finite element 
analysis and reliability analysis. The program does the following steps: 

1. Read the mean value and standard deviation of each random variable as input data. 
2. Call the laminate code to calculate the material properties of laminate model. 
3. Generate the input file for calling the finite element software as a subroutine to perform the structural 

analysis of the rotor hub component. 
4. Read the finite element analysis output file and calculate the limit state function g(x) and its 

derivatives with respect to the random variables. 
5. Use FORM to compute the next iteration point in the search for the MPP. 

Steps 2 to 5 are repeated at each iteration until the program converges to the MPP. This provides the estimate 
of the reliability index ß and the delamination probability of rotor hub component. 

The direct FORM program is re-run for different number of cycles of fatigue life, and the probability of 
failure vs. number of cycles is computed. For this problem, the results of direct FORM are observed to be 
within 10% of the results with the response surface approach. 

6     Theoretical Background for Reliability-Based Design 

6.1     Interference Theory 

Reliability-based design stems from the concepts of interference theory. Interference theory is used to 
find the probability that the resistance (r) of a component or system is less that the applied load (/). The 
simple mathematical function that describes the performance of the design is 

g = r-l     (6.1) 

which is called the response or performance function. The regime in which g = r-l> 0 is the safe state, the 

regime in which g = r -1 < 0 is the failure state, and the state g = r - / = 0 separates the safe state from the 
failure state and is called the limit-state. 
The term interference theory comes from the graphical representation of the PDF for the resistance and load 
as shown show in Figure 18. The failure state can be associated with the shaded region. This region is 
associated with the probability of failure or the probability that the resistance is less than the load, 

P(r<l) = P(r-l<0) = P(g<0) 
which is the probability that the resistance random variable f is less than a realization of the load / multiplied 

by the probability that the load random variable / is equal to the realization / for all realizations of the load, 

P(r<l) = YjP(r<l)P(f<l) (6.2) 
all/ 

We know that the probability that f is less than / is equal to the CDF of r at /. 
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Figure 18: Resistance load interference diagram. 
P(r<l) = Fr(l) (6.3) 

and the probability that / is equal to / is the probability that / is between / and a small increment A/. 

P{1 <l) = P(l<i<l + A/) 

P{l<l) = f,{l)M 
Substituting (6.3) and (6.4) into (6.2) yields 

P{r<l) = YJFr{l)f,mi     (6-5) 
all/ 

The expressions in (6.5) are represented graphically in Figure 19. 
As A/ becomes infinitesimally small and approaches dl, the probability of failure can be expressed as 

(6.4) 

P{f<i) = \>Xl)f,{l)dl (6.6) 

Alternatively, we can consider the probability of failure as the probability that the load is greater than the 
resistance 

P(l>r) = [[\-Fl(r)]fr(r)dr (6.7) 

For particular statistical distributions of resistance and load, direct solutions to (6.6) (or (6.7)) are available 
[Kapur and Lamberson, 1977]. If f and / are independent normal (Gaussian) random variables, then 

Figure 19: Interference diagram. 
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[-^'•^ (6.8) 
I ~N(MI,(TI) 

\yr(l)f,{l)dl = Q>(-ß) (6.9) 

ß = -fif£= (6.10) 

where O is the standard normal CDF and /? is referred to as the reliability index or safety index. 
Recall that for linear functions of independent random variables, the mean value of the function is equal 

to the function evaluated at the mean values of the individual variables and therefore the mean value of 
g = r-l is 

Mg=Mr~ Mi 
and the variance of g is the square root of the sum of the squares of the variance of the individual random 
variables 

V2 2 

The safety index (6.10) can be written as 

ß=   ?''*'   = ^-     (6.H) 
I 2 + ,r2        (7 o. +a 

which is the inverse of the COV of g. 

If f and / are independent lognormal random variables, then 
f ~ LN(E(f),StdDev(r)) 

I ~ LN(E(l),StdDev(l)) 

at = In X 

StdDev(x)2 

E(x) 2 

Hx=\nE{x)--a2
x 

&(/)/,(/)<// = <£(-/?) 
JO 

ß= Mr-Ml 
(6.12) 

where E(x) is the expected value and StdDev(x) is the standard deviation. If f and / are independent 
exponential random variables, then 

£(/) = -f 
A, 

\Fr(l)f,(l)dl = l ^—= E(r)  . (6.13) 
Jo rWy,w Xr-Xt    E(f) + E(l) 

If f and / are independent and f is normal and / is exponential, then 
r~N(nr,ar) 

l~EXPO(A,) 
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Figure 20: Interference diagram showing increase in interference area with decrease in 

safety measures. 

JO 

(/O exp 
:(2M,*,-AWr) 

( 
<D 

fir-X,tr 2     2 \ 

(6.14) 

If f and / are independent and r is exponential and / is normal, then 
r~EXPO(Ar) 

\_ 

2 

(   ^ + exp 
V   UU 

--{lMlXr-XW,) l-O (   M,-*,^ (6.15) 

The probability of failure depends on the mean (or average) value of the resistance and load. As the 
difference between the mean resistance and mean load increases, the probability of failure decreases. If the 
difference between the mean resistance and mean load decreases, the probability of failure increases. This is 
shown graphically in Figure 20. Note that the ratio of the mean resistance to the mean load is equivalent to 
the safety factor used in deterministic analysis. 

\ 
safety factor = ML. (6.16) 

The difference between the mean resistance and the mean load is the safety margin used in deterministic 
analysis. 

safety margin =//,.-//,        (6.17) 

As the safety factor or safety margin decrease, the probability of failure increases. 
The probability of failure also depends on the scatter or degree or dispersion of the resistance and load. If 

either the scatter in resistance or the scatter in load increases, the probability of failure increases. Figure 21 
shows that as the scatter increases, the size of the interference region increase. The change in probability of 
failure with changes in the mean values and scatter of the random variables can also be observed by 
considering the magnitude of the safety index ß as shown in (6.10). 

We have shown two methods for decreasing the probability of failure of a design. One method is to 
increase the relative distance between the mean resistance and the mean load. This is the result of traditional 
design improvements which is equivalent to increasing the safety factor. The other method, which traditional 
design improvement does not address, is to decrease the scatter in the resistance and/or load variables. 
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Figure 21: Interference diagram showing increase in interference area with increase in scatter. 

Addressing the scatter in the design parameters gives the design a whole different method to improve the 
reliability, efficiency, and competitiveness of a design. Increasing the safety factor has been the most popular 
design improvement method because methods addressing scatter have not been widely available except for 
the simple r-l performance function and a limited variety of statistical distributions. Tabulated numerical 
solutions to (6.6) for other distribution type (most notably Weibull) are available (see Kapur and Lamberson, 
1977). However, these solutions are still based on the simple r-l performance function. 

Let us consider a simple yet realistic design of a cantilever beam. Assume the beam is subjected to a 
point load vf at the free end. The design criteria specifies that the displacement d at the free end does not 
exceed the a specific value denoted by z. From mechanics of materials, we know a performance function 
describing the end displacement is 

wlf 

3EI 
(6.18) 

where w is the load, L is the length of the beam, E is Young's modulus of the beam material, and / is the 
cross sectional moment of the beam. The limit state that separates the safe region from the failure region is 

g = z- 
3EI 

0 (6.19) 

Assume the deflection criteria z is deterministic and the load, length, modulus, and moment are all random 
variables with the following distributions: 

W' 

L~LN{AL,£L) 

i~LN{A„C,) 

E~WB{bE,nE,rE) 

The probability of failure is formulated as 

Pf=P z<- 
3EI 

(6.20) 

We rewrite (6.20) so that we have random variables on both sides of the inequality 
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pf=p w> 
3zEI 

We know from (6.7) that 

w>- 
3zEI 

h     )      000 '-'•PS 

(6.21) 

flWfjWf^EWLdldE   (6.22) 

The distribution functions are defined as 

FA 
(3zEl\_      1 3zE! 

Jo 
exp 

K   °*   J 
dx (Gaussian)     (6.23) 

MQ- l2n£LL 
exp 

l(lnL-Aj^ 

CL 
(lognormal)     (6.24) 

//(/) = -fixt,! 
exp (lognormal)        (6.25) 

fß(E) = 
_ *£ I E-TE 

*£-> 

^   ; 
exp 

VE 
(Weibull) (6.26) 

Although the performance function describing the displacement of the beam (6.18) is simple, substituting 
(6.23) through (6.26) into (6.22) creates a multiple integral that is difficult, if not impossible to solve. Using 
direct integration to find the probability of failure for most engineering designs is not practical. 

6.2     Second Moment Formulation 

Due to the impracticality of solving the multiple integral associated with the interference region, second 
moment formulations have been developed to approximate the probability of failure. The term second 
moment formulation refers to the transformation of the random variable statistics into equivalent standard 
normal variables described only by the first and second moments, // and a respectively. We will develop the 
second moment formulation based on the simple r-l performance function with both f and / as 
independent Gaussian random variables. The formulation will then be generalized for more complicated 
performance functions and various types of statistical distributions. 

6.2.1     Linear response functions 

If g = r-1 then we observe that 

(g > 0) -> (r > /) is the safe state 

(g < 0) -»(r < I) is the failure state 

(g = 0) -> {r = I) is the limit state 

If we transform r -> JV^u,., <7r) and I -> N{H„<T,) into standard normal variables f' -» N(l,0) and 

/' -> JV(1,0) 

r' = ^^-->r = o-rr' + /ir       (6.27) 
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Figure 22: Linear limit state equation in standard normal space. 

(6.28) P = l—&-->!= (T,i' + M, 

The limit state equation can now be written as 

g = o = f -I = arr' + Mr- a,!' - M,       (6.29) 

If we plot (6.29) in standard normal space (considering the (/"',/') axis), we get a straight line as shown in 
Figure 22. 

We know that the minimum (perpendicular) distance S of any line 
ax + by + c = 0 (6.30) 

to the origin is 

J = T=£=T   (6.31) 

If we put (6.29) in the form of (6.30) 

g = {ar)r' + {-al)i' + {Mr-Ml) = 0       (6.32) 
then the minimum distance S to the origin is 

S=   ?r~Ml     (6.33) 

Comparing (6.33) to (6.10) we notice that 8 is equal to the safety index ß and thus the probability of failure 
for the performance function is 

Pf = <D(-<y)      (6.34) 

The point on the limit state line which is closest to the origin is called the most probable point (MPP) 

designated (?'*,/'*). Of all of the values of [r',l) which cause failure, the MPP value can be thought of, in 

some approximate sense, as the value of [f",l'\ which are most likely to occur. The MPP is an important 

concept in the second moment formulation because the distance from the MPP to the origin is the safety 
index. Also, approximation methods that allow us to consider complex performance functions must make use 
of the MPP. 
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The x'j* coordinate of the MPP can be found using analytical geometry 

xf = -a,ß      (6.35) 

where a, is the cosine of the angle between the ß vector and the X\ axis 

etc] 
CC:    =" 

m, v (6.36) 

(We will drive (6.36) later.) If we apply the above formulations to the simple linear performance function 

g = r-l with both f and / as independent Gaussian random variables, the limit state function transformed 

into standard normal variables K',/') is 

g = (ffr)r' + (-<7/)/' + (//r-^) = 0       (6.37) 
with safety index 

The MPP in standard normal space is designated (/"'*,/'*) where 

(r-\V*) = (-arß,-a,ß) 

a=- 

(fHfl 
a, =■ ä' 

ä' dr \er j 

Differentiating (6.37) with respect to f' and /' respectively 

dg 

ä' 
■ = <y, 

Therefore, 

a = 
fil^l 

a, = 

1 2 2 

and the MPP in standard normal space is 

(,",/'> 
-CTrß CT,ß 

yjcr2
r + a]   yjcr2

r + a] 
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The direction cosines at are also called the variable importance factors (VIF). They provide a relative 

measure of the sensitivity of the reliability to the random variable X{. The sign of a* indicates the influence 

of the variable on the reliability. The positive sign on ar indicates that as the resistance increases, the 

reliability increases. The negative sign on a) indicates that as the load increases, the reliability decreases. 

The MPP in real space is 

(r\/> 

-arß 

1 al+aj 
Mr 

<J,ß 

V^? -Mi 

Numerical Example 6.1: Assume we are interested in analyzing an automatic assembly process in 
which 3 steel sheets are stacked on top or each other and inserted into a plastic clip as shown in 
Figure 23. 

Plastic Clip 

Steel Sheets 

Figure 23: Steel sheets insert into the plastic clip. 

The assembly process fails when the stack of steel sheets is too thick to fit into the plastic clip. The 
performance function is defined as 

g = xp-3xs     (6.38) 
We define the probability of failure as the probability that the clip opening is less than the stack 
thickness. 

Pf=P(xp<3xs) (6.39) 

The limit state equation associated with the (6.38) is 

g = 0 = xp-3xs (6.40) 
We know that measurements made during statistical process control indicate that the sheet 
thickness and the clip opening have the following statistical distributions: 

jc,~^(^,ffI) = JY(lin,0.1in) 

xp~ N({ip,ap) = N(4 in, 0.Z in) 

The steel sheets and the plastic clips are manufactured by completely different methods. So, it is fair 
to assume that the sheet thickness and the clip opening are independent random variables. 

PerSyst Development Group 
Paul Holland & Associates, Inc. 

31 



To find the probability of failure we transform the random variables (xx,xp) into standard normal 

variables 

x's=        ^s ^xs = asx's+Ms 

(6.41) 
A, Xn Mp A A, 

*P=— -=>X    =(T  X' +flp 
°p 

Substituting (6.41) into (6.38) yields 

g = 0 = (a,)*; + (-3a,)*; + (//, -3Ms) (6.42) 

Comparing (6.42) to (6.32) allow us to solve for the safety index ß, which is the minimum distance 
from the line g = 0 to the origin as in (6.33). 

fl=   ,M"-^     =   ,   4-3       =1.17 
^+(3aJ2     A/0.8

2-0.32 

The probability of failure is 

/>y =$(-/?) = (D(-1.17) = 0.121 

Which indicates that about 12% of the assemblies will fail. 

It is interesting to note that the deterministic analysis tell us that we have a safety margin of 1 inch 
and a safety factor of 

M       4 
safety factor = —— = — = 1.33 

3//,     3 
If we wish to change the design parameters such that we decrease the probability of failure, it is 
useful to calculate the VIFs from (6.36) 

ap=   .      "> =-^— = 0.936 
^a2

p+(3asf     V0.82+0.32 

-3<rv -0.3 ft„,, «, = -.=    '       =-f =-0.351 
Jal+{3cT,)2     V0.82+0.32 

The VIFs indicate that the probability of failure is most sensitive to changes in xp. Let's check this 

out. 

Assume that through an improved manufacturing process, the plastic clip can be manufactured with 
tighter tolerance such that the standard deviation is cut in half and the steel sheets remain 
unchanged 

xp~N(4,0A) 

*,~tf (1,0.1) 
The new probability of failure is found as follows: 

V0.42+0.32 

Pj = 0(-2) = 0.0228 
Which indicates that about 2% of the assemblies will fail which is a substantial improvement over the 
12% probability of failure for the original assembly procedure. 
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Now let us assume that through an improved manufacturing process, the steel sheets can be 
manufactured with tighter tolerance such that the standard deviation is cut in half and the plastic clip 
remains unchanged 

xp ~ #(4,0.8) 

xs ~ #(1,0.05) 
The new probability of failure is found as follows: 

4-3 
fl=  , =123 

V0.82 +0.152 

P/=<D(-U3) = 0.109 
Which indicates that about 11 % of the assemblies will fail which is not a substantial improvement 
over the 12% probability of failure for the original assembly procedure. 

Therefore, it would be wise to address the manufacturing tolerances of the plastic clip if a decrease 
in the number of assembly failures is desired. Deterministic analysis methods do not allow us to 
assess the improvements gained through the tighter manufacturing tolerances. Deterministic design 
analysis would only allow us to change the mean values of the random variables. 

We can extend the above example for the generalized linear performance function of the form 
w 

g(*) = «o+ £«/*,        (6-43) 
/=i 

The corresponding limit state equation is 
n 

a0+ £>,*,=<) (6.44) 
<=i 

If the random variables *, are independent Gaussian variables with distribution #(//,, ov), we can transform 
them into standard normal variables 

and express the limit state equation as 
» 

«o + I>,K*; + ,",) = 0 (6.45) 

We know that the distance 5 from any surface 

Q+ZO^O (6.46) 
;=1 

to the origin is 

S=   .   C°        (6.47) 

& 
Writing (6.45) in the form of (6.46) yields 

(        "        }    " 
«o+2>„",   +I>,o-,>/' = 0 (6.48) 

V. '=1 ) i=i 

The safety index/? can be expressed as the minimum distance 8 by comparing (6.46), (6.47) and (6.48) as 
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6.2.2     General performance function 

So far we have only considered the case of the linear performance function. Now consider the case of 
generalized performance function of the form 

g{x) = g(x],x2---,xll)   (6.50) 

where x is the vector or n independent Gaussian random variables. If we replace each random variable xt 

by its equivalent standard normal variable 

X: 

<7, (6.51) 

xl=<rlx'l+Mi 
the limit-state equation can be written as 

g{xl,x2»;xH) = g(crlxl + fil,{r2x'2+/i2,—,(r„x'„+M«) = 0        (6-52) 
The distance D from any point x' = (x[,x2,---,x'n) in standard normal space to the origin of standard normal 
space is 

D = ylx,
l
2+X2^+-+x'n

2^^YJli
Xi2 <6-53) 

The MPP of the general performance function (which is the point on the limit-state equation (6.52) closest to 
the origin) can be found using optimization techniques by minimizing D subject to the constrain that 
g(*) = 0. 

Lagrangian multipliers may be used for this optimization as 
L = D + Ag(x) (6.54) 

or in scalar form 

WS>''2+*te> (6.55) 

i = fc',+W 
where (6.55) represents a set of n equations and JC, and xj are related according to (6.51). To find the 
minimum D we minimize L as 

— = 0     i = ia,-,n   (6.56) 
ax\ 

and 

Jr0(6-57> 
which yields n + 1 equations with n +1 unknowns. The solution will provide x' which is the MPP in 

standard normal space Jc'* = (x'*\ ,x'*i ,---,x'\). 

Substituting (6.54) into (6.56) yields 

^L = ^L + X^- = 0    i = \,2,-,n        (6.58) 
dx\    D      dx\ 

from which 
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x\ = -DX^     i = \,2,-,n      (6.59) 
dx 

Substituting (6.59) into (6.53) yields 

"-^-JSLH 
Y 
/ 

n    dg 

ax\ 

and therefore, 

X = - 
y»   <%' 

(6.60) 

Substituting (6.60) into (6.59) yields 

*; = -F=^=—     / = 1,2,---,«       (6.61) 
n  dg2; del 

~dx! 
y"   4g 

Multiplying each side of the equations in (6.61) as follows, 

'•A x dx[ 

dx'2 

-D     dg dg 

it     <%2   ^2  ^2 E (6.62) 

Summing all of the equations in (6.62) yields 

-D       dg dg 

Rearranging terms, 

5>' ^ 

»-1   vÄ/y 

y»   & &'» <*» 

y»   ^ 

-H,*/ 
D 

ydxlj 

(6.63) 

ly»   <%' 
(6.64) 
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gN(X)=o 

Figure 24: Nonlinear limit state equation in standard normal space. 

The minimum distance ß is found when D is evaluated at the MPP. 

P=- 
dg' 

(6.65) 

where the subscript * indicates that the expression is numerically evaluated at the MPP. Later, we will present 
numerical examples to find ß using the equations outlined above. Before we do that, however, we should 

discuss the significance of ß for the nonlinear performance function. 

Remember that ß is the distance from the origin to the MPP in standard normal space for linear limit 
state equations as shown previously in Figure 22 and nonlinear limit state equations as shown in Figure 24. 
Recall that in section 6.2.1, we showed that ß is the safety index and can be used to find the probability of 
failure for a linear performance function as 

Pf=Mrß)     (6.66) 

This is an exact equation with no approximations. However, ß cannot be used to find the exact probability of 

failure for a nonlinear performance function. We can use ß to approximate the safety index if we consider 
the following. 

Figure 25 compares a linear limit state equation to a nonlinear limit state equation with the same MPP 
and ß. A line along ß forms a vector that is perpendicular to the line form by the linear limit state equation 

gL(X) = 0. Also, the line formed by the linear limit state equation is tangent to the line formed by the 

Figure 25: Linear and nonlinear limit state equations in standard normal space. 
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nonlinear limit state equation gN(X) = 0 . 

We know from (6.66) that ß can be used to find the probability of failure of the linear limit state. The 

linear limit state is equivalent to a linear approximation to the nonlinear limit state at the MPP. Therefore, ß 
can be used in (6.66) to find the probability of failure for the first order approximation of the high order limit 
state. Using ß in such a way is the basis for what is know as first order reliability methods or FORM. We 
shall show later that FORM provides good approximations for the probability of failure for most nonlinear 
limit states. This is primarily because the transformation of the random variables to standard normal variables 
often serves to rectify or straighten the curve formed by the non-linear limit state equation. 

An alternate and much simpler way of deriving the results presented in (6.65) through (6.76) is to first 
perform a linear approximation to the general limit state equation and then derive an expression for ß [20]. 
We can expand the general nonlinear performance function at the MPP in a Taylor series as 

g{*) = g(x) + YXx>~x'>) 
;=1 

dg_ + HOT (6.67) 

where HOT represents the higher ordered terms in the series expansion. We know that g[x* 1 = 0 because the 

MPP lies on the failure surface and if we ignore the HOT, then we can write the first ordered approximate to 
the performance function as 

i=i dx, 
(6.68) 

U 

Recall that xt = arf + //, and therefore we can write 

*i ~x' = {°ixl + Mi)~(ff,*/* +/*,) = or,(*; + */*) (6.69) 

and 

dg ^ dg dx\ 

dx.-,     ck\ dx, 
Substituting (6.69) and (6.70) into (6.68) yields 

«*>-s(«-'qt 

(6.70) 

(6.71) 

Equation (6.71) is represented by the limit state equation gL(X) = 0 in Figure 25, which is the linear 

approximation to the general nonlinear limit state equation gN (X) - 0 also shown in Figure 25. Recall that 

the mean value of the standard normal variable is 0, thus, the mean value of g(jc) is approximated by 

'■% =-£*'£ 
\ 

ax' 
(6.72) 

Recall that the variance of the standard normal variable is 1, thus, the variance of g(x) is approximated by 

" I   A.   1 " 

/=! äx, 

V 

V "*i / ;=i 

(6.73) 

We know from (6.11) that ß is the ratio of the mean value to the standard deviation of g( x), 

A'J. 
a 

-Zf 
g 

i=l v 

A) 
ax\) 

which is the same as (6.65). 
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Remembering that each coordinate of the MPP can be expressed as 

xf=-atfi      (6.74) 

and replacing D with ß in (6.61) yields, 
( A^\ 

\ <%! y. 

vi   dg 

Substituting (6.74) into (6.51) yields 

y» £g_ 

)* 

Xt=^,-a,<T,p (6.76) 

Equations (6.75) and (6.76) can be used in a numerical algorithm to solve for the MPP as follows [20,21] 
1. Assume coordinates for the MPP (usually the mean values of the random variables is a good starting 

point). 
dg 

2. Derive each of the derivatives—2-. 
etc] 

3. Evaluate each of the derivatives at the assumed coordinates of the MPP. 

4. Evaluate each of the direction cosines a] according to (6.75). 

5. Write each of the coordinates of the MPP x* in terms of ß according to (6.76). 

6. Substitute the x* 's found above into the limit state equation g(x) = 0 such that the limit state equation is 

in terms of ß. 

7. Solve for ß. 

8. Find the updated assumed coordinates of the MPP x* by reevaluating (6.76) with the ß found above. 

9. Repeat steps 3 through 8 until convergence is obtained on ß. 

There are many other FORM algorithms to solve for ß [22]. There are also methods available to find the 
MPP in real space i.e., no transformation to standard normal space is performed [23]. There are also many 
other mathematical algorithms available in reliability analysis such as second order reliability methods or 
SORM and direct numerical solutions to the integral shown in (6.6). But, for illustrative purposes, we will 
use the simple algorithm outlined above. 

Numerical Example 6.2: Let us again consider the design of a cantilever beam. Assume the beam is 
subjected to a point load w at the free end. The design criteria specifies that the displacement d at 
the free end does not exceed the a specific value denoted by z. From mechanics of materials, we 
know the performance function describing the end displacement is 

d = ^- (6.77) 
3EI 

where w is the load, L is the length of the beam, E is Young's modulus of the beam material, and / is 
the cross sectional moment of the beam. The limit state that separates the safe region from the 

'   failure region is 

g(x) = z-d = z~ — = 0 (6.78) &\ } 3EI 

Assume the deflection criteria z is deterministic and set at 0.25 in. Assume the load, length, modulus, 
and moment are all random variables with the following distributions: 
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w ~ N{fiw,aJ) = #(5000,1000) lbs. 

L~N({iL,crL) = N(\20,l0)m. 
\ I 6 6\ (679) E ~ N(ME,CTE) = AT(30X10

6
,0.3X10

6
) psi 

/ ~#(^,,0-,) = #(1200,150) in4 

The mean deflection according to (6.77) is 

d=wl?=    (5000X120)3    ^0QS 

3EI    3(30X106)(1200) 

Following the steps outlined above: 

STEP 1: Assume the MPP is at the mean value. 

x =(//w,//i,//i,^/) = (5000,120,30X106,1200) 

de 
STEP 2: Derive each of the derivatives -£-. 

dx\ 

Considering the random variable w, we can use (6.51) to write (6.78) in terms of w' as 

g = z -— 
3EI 

and 

dg     -awÜ 

dw'      3EI 

Considering the random variable L, we can use (6.51) to write (6.78) in terms of L' as 

w(aLL' + MLf 
g = z  

3EI 
and 

dg     -w3arL(cTLL' + jULf     -waLL 2 
L1 

8L' 3EI El 

Considering the random variable E , we can use (6.51) to write (6.78) in terms of E' as 

g = z~ 
wÜ 

3{CTEE' + ME)I 

and 

dg _    -wL\-\aE)   _GEwÜ 

<Z' = 3(*EE' + ME)
2
I^ ^1 

Considering the random variable /, we can use (6.51) to write (6.78) in terms of /' as 

8~Z   3E{a,I' + Ml) 
and 
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dg _   -wZ3(-l<rf)   _alyvÜ 

STEP 3: Evaluate each of the derivatives at the assumed coordinates of the MPP. 

* -   -C000XI20)3   _  ft016 

dw'    3(30X106)(1200) 

dg     -(5000)(10)(120)2 

-0.02 
SL'      (30X10°)(1200) 

JuCOJxio'xsoooxno)^ 
<3E'        3(30X106)2 (1200) 

<% = (150)(5000)(120)3^001 

#'    3(30X106)(1200)2 

STEP 4: Evaluate each of the direction cosines a] according to (6.75). 

-0.016 -0.016 

Vo.0162 + 0.022 + 0.00082 + 0.012 0.0275 

. = ^O02_ = _0 7270g5 
1    0.0275 

«1 =00008= 0.029083 c    0.0275 

a,-   °01   -0.363543 

-0.581668 

0.0275 

STEP 5: Write each of the coordinates of the MPP x* in terms of /? according to (6.76). 

w' = 5000 + (0.5 82)( 1000)/? = 5000 + 5 82/9 

L' =120 + (0.727)(10)/?=120 + 7.27/? 

E' =30X106 -(0.029l)(0.3X106)y3 = 30X106 -8730^ 

7* = 1200-(0.364)(150)/?= 1200-54.4/9 

STEP 6: Substitute the x* 's found above into the limit state equation g(x) - 0 such that the limit 

state equation is in terms of ß. 

,-s    n^       (5000 + 582/9)(l 20+ 7.27/?)3        n g(x ) = 0.25 i ^Zi ^! = o       6.80 
3(30X106 -8730/9X1200-54.4/?) 

STEP 7: Solve for ß in the above equation. 

Equation (6.80) has multiple solutions for /?. However, we are usually only interested in values 

between, say, 5 and -5. A ß value between 5 and -5 corresponds to a probability of failure of 
between 0.0000003 and 0.9999997, which usually covers our range of interest. We can further 
reduce our range of interest for the beam example by noticing that the mean value of deflection is 
0.08 inches and the failure criteria is 0.25 inches. More often than not, the beam deflection will be 
less than 0.25 inches. We can safely say that the probability of failure is less than 50%. Therefore, 
we are only interested in positive values of /?. Thus, we can restrict our search to ß values between 
0 and 5. 
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We can find the solution to (6.80) by trial and error or by plotting g(x ) vs. ß as shown in Figure 

26. In either case, we find that ß = 3.66 . 

beta 

Figure 26: g(x*) as a function of ß. 

STEP 8: Find the updated assumed coordinates of the MPP JC* by reevaluating (6.76) with the a, 's 

and ß found above. 

w' = 5000 + (0.582)(1000)(3.66) = 7130 

£,* =120 +(.727X10)(3.66) = 146.6 

E* =30X106 -(0.0291)(0.3X106)(3.66) = 29.97X106 

/' = 1200-(0.0517X150X3.66) = 1000 

STEP 9: Repeat steps 3 through 8 until convergence is obtained on ß. 

A Summary of the calculations needed to converge on ß are shown in 

Table 5. The value for d shown in the first column of 

Table 5 are the most probable failure point found by evaluating (6.77) using the assumed MPP 
values. 

After iteration # 2, the coordinates of the MPP x* are updated by reevaluating (6.76) with the a] 's 

and ß found in iteration # 2. Each of the derivatives is evaluated at the MPP and each of the 

direction cosines a, 's is reevaluated according to (6.75). 

Figure 27 compares the FORM results with Monte Carlo simulation. The beam tip displacements are 

plotted as a function of the probability of occurrence with standard normal units ß. Even though the 
response function is nonlinear, it can be seen that the FORM results compare very well to the Monte 
Carlo Simulation, which can be considered the exact solution. 
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Table 5: Summary of iteration results. 

Initial Values 

Assumed MPP Derivative at MPP <X| P 
w = 5000 w =-0.016 w = -0.582 3.66 
L=120 L = -0.02 L = -0.727 

E = 30E6 E = 0.0008 E = 0.291 
I = 1200 I = 0.01 I = 0.364 
d = 0.08 

Iteration #1 

MPP Derivative at MPP Otj P 
w = 7130 w = -0.0350 w = -0.484 3.595 
L=147 L =-0.0511 L = -0.705 

E = 29.97E6 E = 0.00250 E = 0.0345 
1 = 1000 I = 0.0375 1 = 0.517 

d = 0.2497 

Iteration #2 

MPP Derivative at MPP a. P 
w = 6738 w = -0.0371 w = -0.491 3.595 
L = 145 L =-0.0516 L = -0.683 

E = 29.96E6 E = 0.00250 E = 0.0331 
1 = 921 I = 0.0407 I = 0.539 

d = 0.2499 

FINAL 

MPP Derivative at MPP cti 

w = 6766 w = -0.0370 w = -0.487 
L=144 L =-0.0519 L = -0.683 

E = 29.96E6 E = 0.00250 E = 0.0330 
1 = 909 1 = 0.0413 I = 0.543 

d = 0.25 
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♦ --MC 

Tip Displacement (in.) 

Figure 27: Comparison of FORM results with Monte Carlo simulation. 

6.2.3     Mean value methods 

Mean value methods are particularly suitable when a closed-form expression of the limit state is not 
directly available, as is the case when finite element analysis is used to model the structural response. The 
reliability computation algorithm used in the rotor hub demonstration problem constructs a linear 
approximation to the limit state in the equivalent standard normal space. Mean value methods works 
differently, as follows. 

1. A first-order Taylor series approximation is constructed at the mean values of the random variables—in 
the original space—based on perturbation-based sensitivity analysis using the finite element analysis or 
other implicit response models. The two-parameter scheme is used to transform this closed-form 
approximation and the random variables to the equivalent standard normal space. The Rackwitz-Fiessler 
[21] iteration formula is used to estimate the MPP, and a first-order estimate of the failure probability is 
obtained similar to FORM. This is referred to as the mean value first-order (MVFO) estimate. 

2. The MVFO estimate is refined using advanced mean value (AMV) analysis. This is simply a 
deterministic analysis of the system at the MPP, to re-evaluate the g-function. If the MVFO estimate 
were accurate, the g-function would be exactly zero. If the MVFO estimate were not accurate, then a 
different value would be obtained for the g-function. The MPP and the probability estimate identified by 
the MVFO are now assumed to correspond to this new value of the g-function. 

3. The above two steps are repeated for different values of the g-function. This results in the construction of 
the CDF of the g-function. 

Mean value methods are a practical alternative to FORM, if the deterministic analysis of the system is 
expensive. By simply combining the information from the MVFO step and one additional deterministic 
analysis, one is able to obtain a substantially improved estimate of the failure probability. 

There are optimization algorithms, such as BEGS, which combine the information in the iteration steps to 
perform an accurate search. Such algorithms are especially useful when the Rackwitz-Fiessler algorithm fails 
to converge. However, the programming effort and the memory storage requirements in these methods, plus 
the marginal improvement in accuracy over the Rackwitz-Fiessler method have hindered their widespread 

PerSyst Development Group 
Paul Holland & Associates, Inc. 

43 



application in structural reliability studies. The AMV, with its minimal one step combination, is a practical 
approach in this direction. 

The AMV estimate can be further improved with more iteration. In the AMV + method, sensitivity 
analysis is performed after the AMV step, and steps 1 and 2 of the above procedure are repeated. In a similar 
manner, further iterations can be done to produce AMV + +, AMV + + +, etc., estimates. In each case, note 
that only the first iteration (MVFO) and the latest deterministic analysis are combined. It is important to note 
here that the sensitivity information in the AMV is computed only in the first iteration, i.e., at the MVFO 
step, which is at the mean values of the random variables. If the sensitivity values are needed at the MPP, 
then full sensitivity analysis needs to be performed. 

The AMV method approximates the g function at the very beginning (at the mean values of the random 
variables). That is, the first-order derivatives are calculated at the beginning using finite difference or 
perturbation analysis to have a first-order Taylor series approximation as shown below 

g(J)*g(*v£|v(*,-*;) (6.81) 

-> 
where X   represents the expansion point. Notice that the linear approximation of Eq. (6.81) does not involve 
mixed terms, and the effects of the random variables on the g-function are considered separately. This 
introduces additional approximations. 

Numerical Example 6.3: Assume we have a cantilever bean of length L, loaded at the free end with a 
force w. We wish to find the vertical displacement at the free end of the beam. We know that the load 
w, stiffness E, and the moment of inertia /, are all normally distributed random variables, with mean 
and standard deviation as follows: 

w*JV(5000,1000)lbs 
tW L*N(l 20,10) in 

^ £*N(30xl06,0.3xl06)psi 

IHMIMIimi / * #(1200,150) in4 

T We know from mechanics that the vertical displacement d of the 
free end of a beam is 

,_wL3 

Figure 28: Cantilever beam loaded « - ~rz~ (6.82) 
at the free end. 

Let us assume , for this example, we could not determine the displacement in closed form and had to 
use the simple finite element model in Figure 28 to determine the end displacement. The details of 
each step involved in performing a Mean Value First Order (MVFO) analysis for the above example 
are enumerated below. 

MVFO Analysis 

Step 1. The first step in a MVFO analysis is performing a perturbation analysis about the mean 
values of the input random variables {w, L, E, I) using the finite element model, to determine the 
vertical tip displacement d, of the cantilever beam. The perturbation analysis involved changing each 
variable by one-tenth of its standard deviation about its mean value and rerunning the finite element 
model to create the array of five finite element runs as shown below. The results of the perturbation 
analysis are shown in Table 6. 
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Table 6: Perturbation analysis 

w L E / d(FEM) 
5000 120 3.00E+07 1200 8.00E-02 
5100 120 3.00E+07 1200 8.16E-02 
5000 121 3.00E+07 1200 8.20E-02 
5000 120 3.00E+07 1200 7.99E-02 
5000 120 3.00E+07 1215 7.90E-02 

steP 2 Based on the perturbation analysis of Step 1, a first order Taylor Series expansion is 
performed about the mean values of the random variables using equation (6.81), expressing the 
vertical tip displacement cf, as a function of the input variables. Equation (6.83) represents this linear 
functional relationship. Comparing equations (6.82) and (6.83), it should be noted that equation 
(6.83) is only an approximate relationship based on finite element analysis at the mean value of the 
random variables. 

-0.0831 +1.6* 10-5w + 2.1*10"3I-2.66*10"9£-6.58* 105/ (6.83) 

StepJL Having defined equation (6.83), the next step is to define the limit state equation for first order 
reliability analysis. The limit state equation is defined as: 

S = d0-dapprox (6.84) 

where d0 is the "level of displacement" for which the reliability analysis is performed. In other words, 

the reliability analysis will find the probability that the beam displacement dapprox is greater than d0. 

Based on a range of values of d0, the probability that g < 0 was determined. Table 7 lists the range of 
values of d0 considered along with the corresponding reliability indices (ß) and the most probable 
values (MPP) of the input random variables (w, L, E, I) for which the relationship g < 0 was satisfied. 
Figure 29 plots d0 vs. ß for the MVFO analysis which represents the cumulative distribution function 
(CDF) of the vertical tip displacements of the beam. Notice that the MVFO curve is linear. This is 
because the random variables are normal and a linear approximation to the beam displacement 
response (equation (6.83)) was used in the analysis. However, we have no reason to believe that the 
true displacement response of the beam is linear. If we wish to develop a better approximation to the 
true CDF, we perform an advanced mean value analysis. 

Table 7: MVFO results 

dQ ß w* L* E* j* 
dpEM 

0.00 3.20E+00 3.19E+03 9.62E+01 3.00E+07 1.37E+03 0.023 
0.02 2.49E+00 3.59E+03 1.01E+02 3.00E+07 1.33E+03 0.031 
0.04 1.78E+00 4.00E+03 1.07E+02 3.00E+07 1.29E+03 0.042 
0.06 1.07E+00 4.39E+03 1.12E+02 3.00E+07 1.26E+03 0.055 
0.08 3.60E-01 4.80E+03 1.17E+02 3.00E+07 1.22E+03 0.070 
0.10 -3.50E-01 5.20E+03 1.23E+02 3.00E+07 1.18E+03 0.091 
0.12 -1.06E+00 5.60E+03 1.28E+02 3.00E+07 1.14E+03 0.114 
0.14 -1.77E+00 6.00E+03 1.33E+02 3.00E+07 1.11 E+03 0.142 
0.16 -2.48E+00 6.41 E+03 1.38E+02 3.00E+07 1.07E+03 0.175 
0.18 -3.19E+00 6.81 E+03 1.44E+02 3.00E+07 1.03E+03 0.219 
0.20 -3.90E+00 7.21 E+03 1.49E+02 3.00E+07 9.95E+02 0.266 
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Figure 29: MVFO and AMV analysis results. 

AMV Analysis 

AMV is a continuation of the MVFO analysis in which we use the MPP from the MVFO analysis and 
the finite element model to further refine the reliability analysis. 

Step 4. The vertical tip displacement based on the performing a finite element analysis using the 
MPP values of the random variables (columns 3 through 6 of Table 7) is evaluated. These values are 
listed in the last column of Table 7. Notice that the value of the tip displacement from the finite 

element analysis dFEM is not the same as d0. The value of d0 is equivalent to the value obtained by 
using the approximate equation (6.83) at the MPP. The displacement value at each ß is shifted from 

d0 to dFEM as show by the AMV curve in Figure 29. The AMV curve is the CDF that represents a 

refinement to the MVFO CDF using just one additional finite element run at each value of ß. 

A Monte Carlo simulation was performed using the closed-form response (equation (6.82)) for 
comparison purposes. Figure 30 compares the AMV results with Monte Carlo simulation. The 
comparison shows excellent agreement between the two methods. However, we must remember 
that the purpose behind performing mean value methods is because we do not have closed-form 
solutions available and have to use computational models to determine the response of interest. 
Therefore an AMV+ analysis can be performed to verify the validity of the AMV analysis. 
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Figure 30: Comparison of AMV results to Monte Carlo. 
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AMV+ Analysis 

AMV+ is a continuation of the AMV analysis in which we use the MPP from the MVFO/AMV analysis 
and the finite element model to further refine the reliability analysis. 

Step 5. If we are interested in further refining the AMV estimate at the ß value of-3.19 (refer Table 
7), for example, we perform another perturbation analysis by repeating Steps 1 and 2. The only 
difference this time is the perturbation analysis is now performed about the MPP values of the input 
random variables at/? =-3.19 as opposed to the mean values in the MVFO analysis. The results of 
the perturbation analysis are shown in Table 8. 

Table 8: AMV+ perturbation analysis 

w* L* E* /* d 
6.81 E+03 1.44E+02 3.00E+07 1.03E+03 2.19E-01 

6.91 E+03 1.44E+02 3.00E+07 1.03E+03 2.22E-01 

6.81 E+03 1.45E+02 3.00E+07 1.03E+03 2.23E-01 

6.81 E+03 1.44E+02 3.00E+07 1.03E+03 2.18E-01 
6.81 E+03 1.44E+02 3.00E+07 1.05E+03 2.16E-01 

Step 6. Based on the above perturbation analysis a first order Taylor series expansion (equation 
(6.81)) is performed about the MPP as shown in equation (6.85). 

daPPro,M^ = -0.2266 + 3.21 * 1 (T5 w + 4.588 *10~3L- 7.28 *\0'9E- 2.1 *1(T4/ (6.85) 

Step 7. The limit state equation is defined as follows. dAMV is chosen as 0.219 because at the AMV 
step for/?= -3.19 the d value from Finite Element Analysis was 0.219 (refer Table 7) 

S - UAMV - dapproxMn.. 

= 0.219 -dannmx 
( '   ' 

Step 8. Performing a first order reliability analysis with equation (6.86) as the limit state yields the 
following results. 

^AMV ß w* L* E* /* dFEM 

0.219 -3.41 E+00 6.72E+03 1.44E+02 3.00E+07 9.46E+02 0.236 

Figure 31 compares the AMV+ result with the AMV results. It can bee seen that the AMV+ result compares 
favorably with the AMV results and thus it can be assumed that the AMV and AMV+ results are valid in the 
regime of/?=-3. 

6.2.4    Direct FORM 

If we repeat steps 1 through 8 the analysis would be known as AMV++. If we again repeat the steps the 
analysis is known as AMV+++ and so on. If we perform the analysis in which the number of repetitions is 
based on the convergence of ß and/or the MPP, the analysis is known as direct FORM. Therefore MVFO 
and AMV methods are subsets of the direct FORM analysis. 
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Figure 31: Comparison of AMV results and AMV+ results. 

6.3     Design of Experiments Input Matrix 

Response surface methods require an analytical relationship that describes the component behavior 
subject to a specific failure mechanism. In cases where explicit relationships describing system degradation 
or loading exist, they can be used by probabilistic methods to predict reliability and life. However, if 
computational methods, such as finite element methods, are employed to estimate component loading or 
behavior, the functional relationship between loading and design variables must be approximated using 
closed-form equations. 

Response surface methods calculate implicit functions describing component behavior. In order to 
estimate the response surface, several steps are involved, namely: 

1. Identifying the significant random variables. 
2. Establishing the degree of model fidelity required or desired. The engineer must determine if a first- 

order linear model description of the phenomena is sufficient or if a higher order model is required. 
3. Determining the experimental design. The experimental design must be constructed based on the model 

that must be fitted, the number of experimental conditions that can be tested, time constraints and budget 
constraints. In addition, the number of levels for each variable must be determined (i.e.: how many 
different values of each variable will be tested). 

4. Executing the experimental design. The computational software should be run at the individual variable 
settings (experimental runs) determined by the experimental design, with the variable settings and 
resulting output recorded. 

5. Fitting the response surface model. Multiple regression techniques are used to estimate the parameters of 
the approximating polynomial. Typically, first or second-order models of the response surface are 
sufficient. 

The selection of the model order is fairly straightforward. Unless evidence or knowledge exists to the 
contrary, a second-order design is desirable since first-order effects are included, as well as measures of 
curvature. If a second-order response surface does not sufficiently fit the computational model, then higher- 
order designs can be implemented. 

A critical consideration is the number of computational model conditions that must be executed in order 
to establish a valid response surface model of the phenomena of interest. Minimizing the number of 
experimental conditions that must be modeled can drastically reduce the computational time required. While 
fractional factorial designs, such as resolutions III, IV, and IV designs, might seem to offer the most 
economical means of determining the response surface, they are not the most efficient designs available. 
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Figure 32: CCD treatments for 2k design (left) and axial runs (right). 

In selecting the experimental design for fitting a response surface the desirable features are: 

1. A reasonable distribution of data points throughout the design space. 
2. Enables experiments to be performed in blocks to reduce error and noise. 
3. Generates estimates of error for the fitted model. 
4. Economizes the number or runs. 
5. Does not require a large number of levels of the variables. 
6. Enables determination of model adequacy, especially estimation of lack of fit of the model. 
7. Allows designs of higher order to be built upon sequentially. 

Although fractional factorial design reduce the number of combination treatments required, they require 
repetition of the treatments in order to obtain error estimates for the fitted relationships. In contrast, 
experimental design tailored to fitting response surfaces can reduce the required number of treatments and the 
number of required repetitions. If the factors under investigation are to be explored at two levels then central 
composite designs (CCD) have several advantages. First, CCD enables the adoption of sequential 
experimentation. In this case a 2k design of resolution V is used to fit a first-order model, which exhibits a 
statistically significant lack of fit. The experiment then progresses with additional treatments to include 2k 
axial runs. A graphical depiction of the treatments run in the CCD case is shown for 2 variables in Figure 32. 
In this case the initial runs are conducted at factor level settings of (1,1), (1,-1), (-1,1), and (-1,-1) for the two 
factors. If following the initial runs the fitted first-order model lacks fit, additional runs are conducted at 5 
additional treatments, specifically, (0,0), (0,V2), (0.-V2), (V2,0), and (-V2,0) [see Figure 32]. The axial 
treatments [(0,V2), (0,-V2), (V2,0), (W2,0)] can involve a single replication, but numerous trials are typically 
conducted at the center point (0,0). The addition of center point runs allows for the estimation of curvature 
effects, while axial points enable estimation of quadratic terms. Thus the resolution V fractional design 
allows estimation of the linear and 2-factor interaction terms, and is variance optimal for these terms. The 
axial points enable estimation of quadratics terms, since without them only pure second order terms are 
estimated. Center run points provide estimates of error and improve quadratic term estimation. 

Where models are to be fit to factors that have three levels, the CCD approach is not applicable. In cases 
of factors with three levels are investigated, Box-Behnken designs (BBD) [24] are efficient methods to fit 
response surfaces.  Combining 2k factorial incomplete block designs forms the BBD.  Examining the Box- 
Behnken design for three variables in Figure 33, it can be seen that it is a spherical design, with no points at 
the upper or lower variable limits (i.e.: no points at the vertices). This can be advantageous if cost or physical 
constraints make conducting tests at extreme variable levels infeasible. 

There are other advantages to using design specifically tailored to generating response surface in addition 
to that of sequential experimentation. A significant consideration in design selection is that of rotatability. 

Design rotatability exists when N Var y(x) I a2 is constant for all locations equidistant from the center of 
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the design. The impact of rotatability is that for any two 
points, x, and x2 that have the same distance from the 

+1   f        I    * f 4x3 center, their associated predicted values, ^(x,) and 

y(x2), have the same variance. Thus if the design is 
rotated about the center the variance of the predicted y is 
unchanged. The implication of rotatable designs is that 
all predicted response values are equally uncertain at 
any given radius from the center. If non-rotatable 
designs are used, the resulting response surface could 

-1 +1 have a bias in the variance depending on both the 
I 1 distance from the center and the factor levels.   The 

Figure 33: BBD design for three variables. benefits rotatability are significant, favoring the use of 
either rotatable central composite or Box-Behnken 

designs for establishing the treatment array for the experiments. 

7     Phase I Conclusion 

Phase I of the proposed research effort has successfully demonstrated that the probabilistic analysis 
framework can be integrated with current state-of-the-art composite design to estimate the failure probability 
due to various critical failure modes. In addition, the same framework can be used to compute the sensitivity 
of the various random input design parameters to the final design without any extra computational effort. 

In particular, a composite helicopter rotor hub test specimen, subjected to cyclic loading, was analyzed to 
predict delamination onset failure. A structural model of the rotor hub was created using the finite element 
program ANSYS. The output from the structural analysis in ANSYS was fed into the Virtual Crack Closure 
Technique (VCCT) module to model delamination onset. A Reliability Analysis framework including 
Response Surface Analysis and FORM modules was developed to integrate with the structural analysis 
modules. The response surface analysis was used to develop a limit state equation relating the primitive input 
design parameters (random variables such as E, P, and <J>) to strain energy release rate Gmax. FORM analysis 
estimated the probability of delamination onset and furthermore, determined the distribution of the failure 
probability over a range of cyclic lives. In addition, the sensitivity analysis in FORM revealed that the 
external loading to the structure, namely P and O are the most critical parameters affecting the reliability of 
the rotor hub. Summarizing, the following tasks will be completed at the end of Phase I. 

■ Demonstrated probabilistic analysis framework 
■ Demonstrated composite Finite Element modeling (FEM) technique 
■ Developed framework for integrating probabilistic and FEM codes 
■ Applied developed method to a practical problem 

Figure 34 further helps in illustrating the tasks accomplished in the Phase I effort and how these tasks fit into 
the complete Phase II effort. The solid boxes in Figure 34 represent the tasks that were successfully 
completed at the end of Phase I. The hatched boxes in the figure represent the tasks that are proposed in 
Phase II to develop a powerful, commercially viable composite analysis design tool. 
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